
“Mobilise” Redevelopment

High Level Specification

Functional descriptions and estimates

Draft: 10 October 2020

Created by Paul Rohrlach, Gloria W. and Helen Varley Jamieson

Table of Contents

1. What is UpStage?

2. Components

3. Network and I/O Layers

4. Communication/message layer between Performers and Participants

5. Browser Support of the Stage, Character Speech, Movement and Interaction

6. Packaging for Ease of Use

7. Support and Maintenance

Revision History

Gloria 2020-08-30 Initial version

Helen 2020-08-31

Paul 2020-09-01 Formatting and grammatical changes

Helen 2020-09-02 small comments

Helen 2020-09-03
added some more comments & questions, & expanded on the
opening section about what UpStage is

Paul &
Gloria

further refinement of details

Helen 2020-10-10 formatting and PDF

1. What is UpStage?

UpStage is an online collaborative performance and communication platform used by artists and
students for close to seventeen years. It allows for the real-time manipulation of digital media in a
browser-based interactive stage environment, using digital media including images, animation,
audio, text-to-speech, text, live audio-visual streams, and live drawing. Artists and audience present
on the virtual stage see and hear everything at the same time, and can interact in real time via a text
chat.

This platform has been used as an artistic tool, a teaching environment, and a creative and
entertainment platform to encourage discussion and creative exploration of everything from
political and social issues to fun topics. Accessibility for audiences and artists is a key feature - the
platform is browser-based and requires no additional download or installation to create or attend
performances. It’s a profound, complex platform that is needed now more than ever, in this time in
our history when so many people cannot physically interact, or are struggling to adapt to online
interaction.

A platform rebuild is long overdue. The purpose of the rebuild is to bring UpStage up to date with
current technology, most importantly removing the dependency on Flash & making the software
compatible with mobile devices. An installation package will be created for those who wish to set
up their own UpStage instance on their own server, along with appropriate technical documentation
to support both installation and ongoing maintenance.

2. Components

Upstage has these high-level components, assets, and attributes:

Static content: considered by our server-side code to be assets that are executed or displayed by the
web browser.

• image files: still and animated graphics, for example animated image files that display
different positional “frames”, appearing as motion once loaded into a browser. These are
used on the stage as avatars, backdrops, and props.

• audio files: music and sound effects in common formats.

Dynamic content:
• text chat: text entered in real-time via the chat window, by players and audience, and can be

read by a text-to-speech program in the browser.
• “voice” files that add text-to-speech support for new voice types and pitches, accents, etc.
• live drawing: real-time creation of drawings by individual artists or collaboratively, directly

onto the stage.
• live audio-visual streams: webcam feeds streamed in real-time to the stage.
• external media: ephemeral content called in for a specific period of time (video, image,

audio) as an embedded function

Server-side “event processors” able to transfer avatar movement data, speech data, prop data, other
related data to each connected device, and able to receive and send these events from/to every
connected device.

Server-side static content servers, which serve this content to all connected devices. This will not
only use SSL, but will also show creator attribution and allow the creator to control access to their

avatars, voices, and other media used in Upstage.

Browser-side avatar creation tools, which allow a performer to create and edit avatars within reason.
The avatar is first created with an Open Source avatar creation tool. The standard file formats
generated in Open Source will be supported in UpStage.

The “live stage”, which is populated with assets prior to the performance, and is the main
interactive “console” for Upstage avatars. This development is most likely all in some form of
Javascript, HTML5, and possibly WebGL, based on performance and difficulty of support.

The live chat, where attendees can interact, and where performers can see and react to chat, as well
as participate in conversations.

The “workshop” or backstage area - where media can be uploaded, assigned to stages, some editing
e.g. selecting voices; stages are created & edited; player profiles managed (at the moment just
people’s passwords, not any kind of visible profile) and other administration tasks.

3. Network and I/O Layers

The performance of the Upstage platform is a vital part of its success. To make an Upstage live
performance ideal irrespective of location or type of computer, we are considering the following:

The serving of live events, at its lowest level, will always need to open a socket, transfer data, and
close a socket. This is how all protocols work on all computers at their lowest levels. The act of
opening and closing this connection is an expensive (CPU-intensive) operation for each sending and
receiving computer to do repeatedly. This is why we are considering methods and network
protocols which allow for “long-lived” “self-healing” connections between “brokers” (site-to-site
servers which “sync” with each other), and between servers and performers/participants.

To accomplish this we will consider several solutions: MQTT using Mosquitto, Websocket using
POSIX threads/lightweight processes without global locking mechanisms, and other socket I/O
tools/libraries. Experimenting with this, choosing the right solution, and then implementation will
take approximately two months for one developer at 40 hours/week.

The static content server can be considered in the I/O layer as well, for the purposes of a high-level
overview. It is much easier to implement and is a well-understood problem with common solutions.
We will be using the Nginx/UWSGI/Flask stack, with a SqlAlchemy/Postgresql or CouchDB
persistent data layer, to possibly handle user-based permissions. There will be consideration and
experimentation with newer token-based permissions models, and to allow for time to work with
these, we will need approximately one month for one developer at 40 hours/week.

4. Communication/message layer between Performers and Participants

The Upstage “protocol” layer has to be examined and refactored/reimplemented to reflect new
features and performance needs. Defining the messages which travel from the server (broker) to the
server won’t be necessary if MQTT is chosen. For other solutions, defining the messages servers
need to “sync” with each other will be necessary. Defining messages to update dialogue, avatar
movement and interaction, speech, and interaction with scenery and other assets will be quite a bit
of work. After implementation, it will be regularly updated and “tweaked” for optimal performance
and new messaging. This will take approximately two months of implementation and one month of
experimentation for one developer at 40 hours/week.

5. Browser support of the Stage, Character Speech, Movement and
Interaction

This is an intensive part of this project, using combinations of two or three languages, several tools
and frameworks, and possibly OpenGL tools supported by common browsers.
Implementing a fully functional “stage”, which is really an open canvas of predefined objects
interacting in a variety of ways based on predefined rules, involves implementation, writing unit
tests, and creating “baseline” characters, dialogues, and interactions. This will require a small team
of browser/front end developers (3 to 5) four to five months at 40 hours/week.

6. Packaging for Ease of Use

Developers will have to work together to “package” this in a way that is as easy to set up, configure
and install/run. “Out-of-the-box” basic execution and ease of configuring multi-broker
configuration, with basic character configuration and functionality is our goal. This will take the
entire team’s effort for approximately three weeks at 40 hours a week.

7. Support and Maintenance

To properly support and maintain this platform after release, developers will need to perform bug
fixes and add reasonably scoped new features. This would require at least one front end developer
and at least one back end developer part-time (20 hours/week) for several months (up to 18 months
or more) after release.

The project will produce technical documentation for developers joining the project and installation
manual for anyone wishing to install their own UpStage server, as well as a user manual aimed at a
non-technical audience. The team will also work on a business model, planning to use Upstage to
bring in revenue streams to sustain the project past this period.

